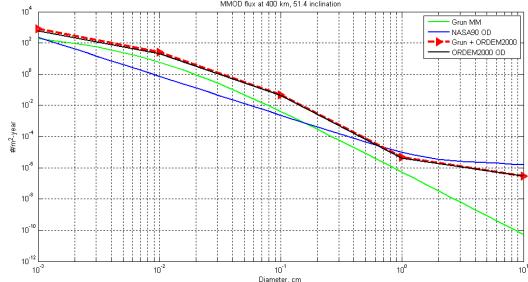
MMOD-IMLI: Integrated Thermal Insulation and Micrometeoroid/Orbital Debris Protection

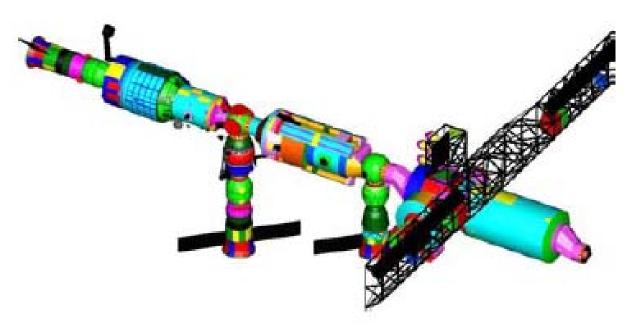
Alan Kopelove, Quest Thermal Group 303.395.3100x101 Scott Dye, PI, Quest Thermal Group, 303.395.3100x102 Gary Mills, Ball Aerospace 303. 939.4700 Eric Christiansen, NASA JSC Dana Lear, NASA JSC Wes Johnson, NASA KSC

> NASA SBIR Technologies Workshop June 28, 2012

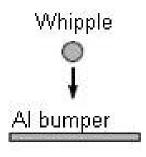

Proprietary, Patented and Patent Pending Technology of **Quest Thermal Group and Ball Aerospace**

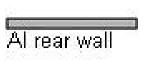
Export Control Notice Export or re-export of information contained herein may be subject to restrictions and requirements of U.S export laws and regulations and may require advance authorization from the U.S. Government.

MMOD Protection


Micrometeoroid/Orbital Debris (MMOD) is a risk for spacecraft, fuel depots and space stations
Designers must provide MMOD protection, based on MMOD environment, size/geometry/orientation of spacecraft, duration of mission, and likelihood of critical damage

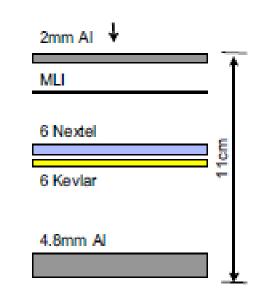
MMOD shielding on the ISS


- Adequate MMOD protection on the ISS is required for crew safety and mission success
- The ISS requires multiple MMOD shields
- Shield design based on risk assessments



MMOD shields

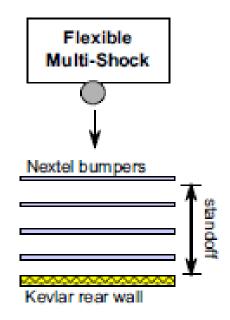
- Whipple shields
 - Two plate shields
 - Spacing between outer bumper layer and spacecraft rear wall is critical to stopping power
 - To stop a 6.3mm particle @ 7km/s requires 20 kg/m²



Quest Thermal Group and Ball Aerospace Information

MMOD shields

- Stuffed Whipple shields
 - Uses additional high strength layers
 - Protects US Lab module of ISS
 - Designed to stop 1.3cm @ 7km/s
 - Massive at 27kg/m² (42kg/m² with rear wall)

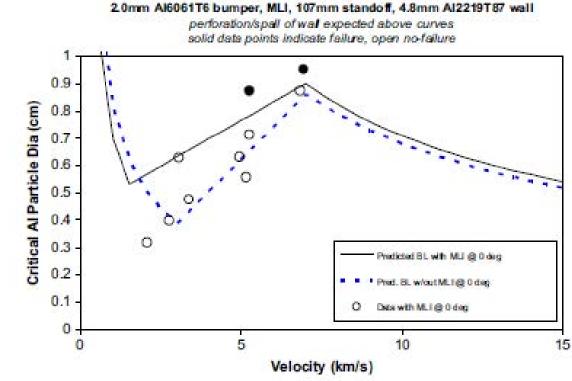

Quest Thermal Group and Ball Aerospace Information

MMOD shields

Nextel Multi-shock multiple layer shields

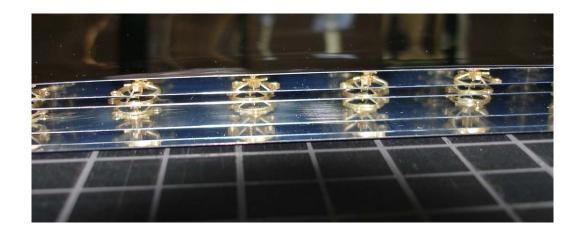
- 4 layers Nextel ceramic fiber, Kevlar polyaramid layer
- Penetration equations developed
- Stopping power related to spacing and areal density

Areal Density _{bumpers} =	0.19 * diameter _{particle} * density _{particle}					
Areal Density _{rear wall} = -	43.1 * Mass _{particle} * Velocity _{particle}					
	Spacing ² * (40/Yield Stress _{rear wall}) ^{0.5}					

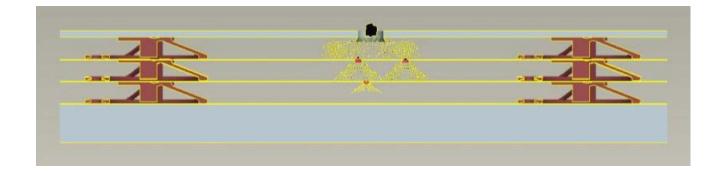


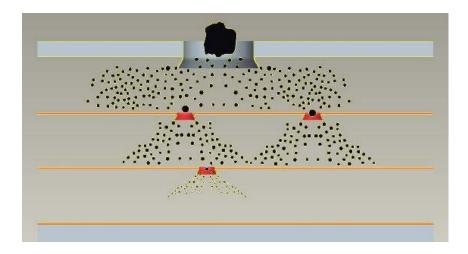
MMOD shields

Conventional MLI offers slight MMOD protection

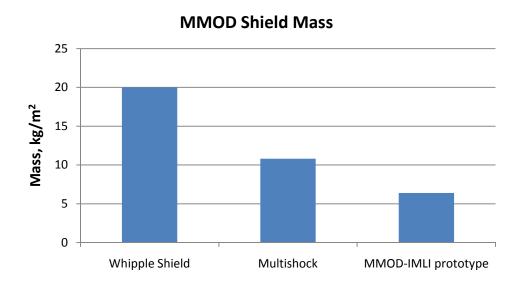


IMLI discrete spacers


IMLI discrete spacer technology

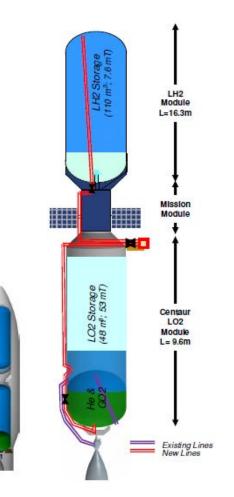

- Can provide large interlayer spacing
- Can support high strength ballistic layers
- Can provide high performance thermal insulation
- Heavy bumper plate and standoffs not required

MMOD-IMLI concept



 Preliminary analysis shows mass to stop penetration by a 6.3mm particle at 7km/s:

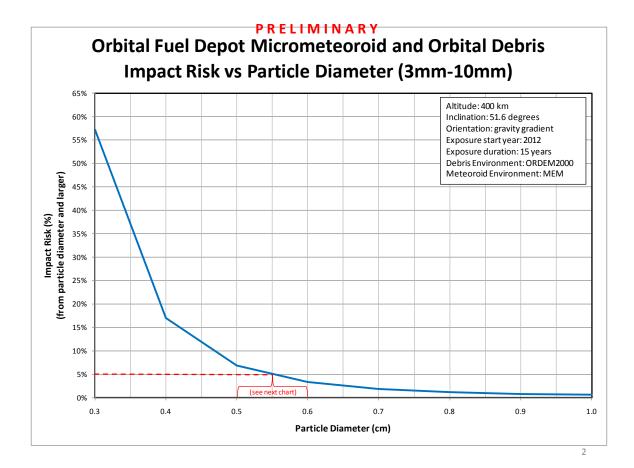
MMOD-IMLI Phase I goals

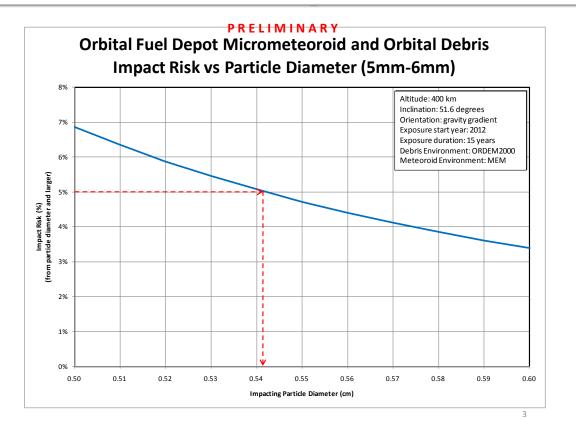

- Evaluate MMOD protection and thermal performance available from MMOD-IMLI structures
- Design and fabricate MMOD-IMLI prototypes
- Perform hypervelocity impact tests
- Measure thermal performance
- Determine feasibility of MMOD-IMLI

Orbital Fuel Depot mission

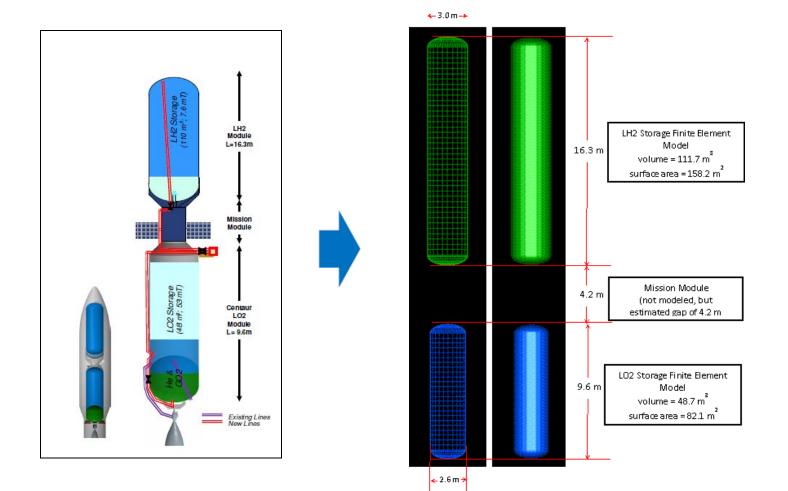
Orbital Fuel Depot (OFD)

- Requires near zero boiloff (thermal insulation)
- 15 year mission
- Colocated near ISS at 51.6°, 400km
- Acceptable risk of failure set at 5% (95% PNP)



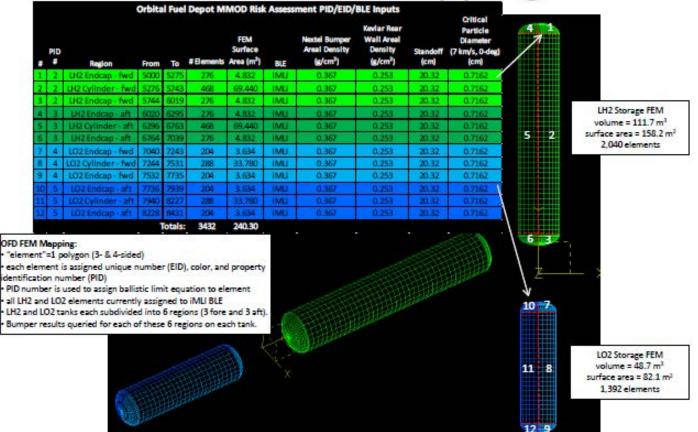

MMOD fluence and risk

MMOD fluence and risk



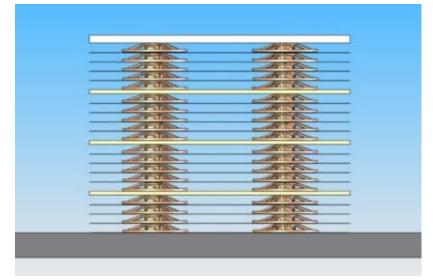
For PNP > 95%, critical particle is 5.4mm diameter.

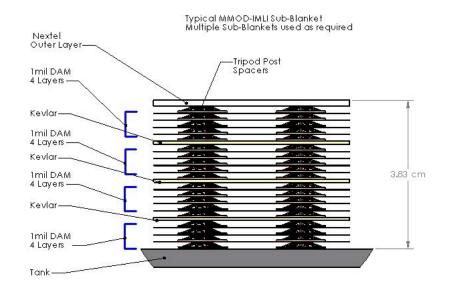
Orbital Fuel Depot FEM



Orbital Fuel Depot FEM

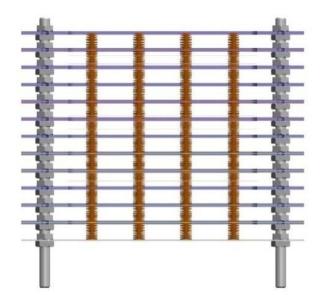
OFD FEM Mapping




D.M. Lear NASA JSC/KX Hypervelocity Impact Technology (HVIT) Team

PRELIMINARY

MMOD-IMLI preliminary design

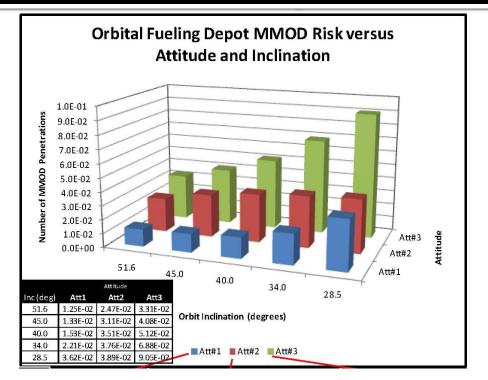


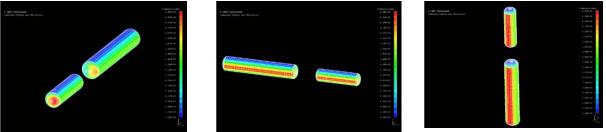
- MMOD-IMLI preliminary design:
 - Widely spaced layers
 - Supported 12 ballistic layers of Nextel and Kevlar
 - Integrated MMOD shielding and thermal insulation

MMOD-IMLI Areal Density

iMLI Areal Density Estimate (g/cm ²)								
Laver								
		Material	Areal					
Laver				Conversion	Density			
#	Location	Description	Factor	(g/cm^2)				
1	1	Nextel AF-10	(g/cm ²) 0.0292	# Layers	1.000	0.0292		
2	1.2	Mylar	0.003556	9	1.000	0.032004		
3	2	Nextel AF-10	0.0292	1	1.000	0.0292		
4	2,3	Mylar	0.003556	9	1.000	0.032004		
5	3	Nextel AF-10	0.0292	1	1.000	0.0292		
6	3,4	Mylar	0.003556	9	1.000	0.032004		
7	4	Nextel AF-10	0.0292	1	1.000	0.0292		
8	4,5	Mylar	0.003556	9	1.000	0.032004		
9	5	Nextel AF-10	0.0292	1	1.000	0.0292		
10	5,6	Mylar	0.003556	9	1.000	0.032004		
11	6	Nextel AF-10	0.0292	1	1.000	0.0292		
12	6,7	Mylar	0.003556	9	1.000	0.032004		
13	7	Kevlar KM2-705	0.0244	1	1.000	0.0244		
14	7,8	Mylar	0.003556	9	0.667	0.021336		
15	8	Kevlar KM2-705	0.0244	1	1.000	0.0244		
16	8,9	Mylar	0.003556	9	0.667	0.021336		
17	9	Kevlar KM2-705	0.0244	1	1.000	0.0244		
18	9,10	Mylar	0.003556	9	0.667	0.021336		
19	10	Kevlar KM2-705	0.0244	1	1.000	0.0244		
20	10,11	Mylar	0.003556	9	0.667	0.021336		
21	11	Kevlar KM2-705	0.0244	1	1.000	0.0244		
22	11,12	Mylar	0.003556	9	0.667	0.021336		
23	12	Kevlar KM2-705	0.0244	1	1.000	0.0244		
24	13	Mylar	0.003556	9	0.000	0		
000000		AI 2024-T3				100		
25	WP	(0.040")		0	0.000	0		
					real Density:			
Rearwall Areal Density: 0.253								
	Total Shield Areal Density: 0.620							

OFD Penetration Risk

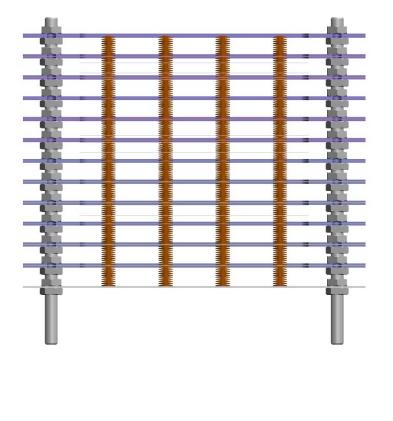


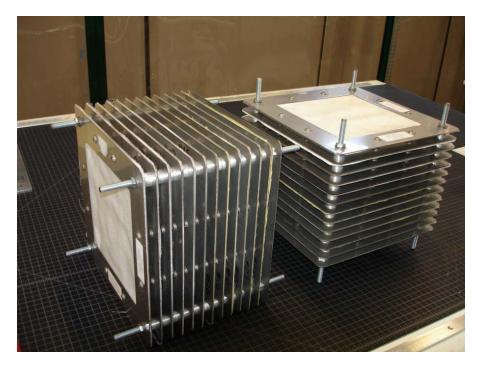

	Orbital Fuel Depot MMOD Number of Penetrations (N)											
	(Inclination 51.6 deg, 2012+15 years exposure, 400 km altitude, ORDEM2000 & MEM)											
			Attitude #1 (RPY=0,0		.0,0)	0,0) Attitude #2 (RPY = 0,0,90)			Attitude #3 (RPY = -90,0,0)			
#	Region	From	То	deb	met	both	deb	met	both	deb	met	both
1	LH2 Endcap - fwd	5000	5275	8.57E-04	2.44E-05	8.82E-04	1.48E-04	8.58E-06	1.56E-04	3.56E-04	9.39E-06	3.65E-04
2	LH2 Cylinder - fwd	5276	5743	4.80E-03	4.17E-04	5.21E-03	7.09E-03	2.23E-04	7.31E-03	1.42E-02	4.65E-04	1.47E-02
3	LH2 Endcap - fwd	5744	6019	7.33E-04	2.33E-05	7.57E-04	6.38E-04	3.02E-05	6.68E-04	3.56E-04	3.35E-05	3.89E-04
4	LH2 Endcap - aft	6020	6295	5.26E-04	1.24E-05	5.38E-04	1.49E-04	8.52E-06	1.58E-04	1.33E-04	3.48E-06	1.37E-04
5	LH2 Cylinder - aft	6296	6763	1.74E-04	1.17E-04	2.91E-04	7.10E-03	2.20E-04	7.32E-03	6.16E-03	1.47E-04	6.31E-03
6	LH2 Endcap - aft	6764	7039	3.18E-04	1.12E-05	3.29E-04	6.37E-04	3.00E-05	6.67E-04	1.33E-04	1.64E-05	1.49E-04
7	LO2 Endcap - fwd	7040	7243	5.16E-04	1.75E-05	5.34E-04	1.09E-04	6.13E-06	1.15E-04	2.70E-04	7.02E-06	2.77E-04
8	LO2 Cylinder - fwd	7244	7531	2.33E-03	2.03E-04	2.54E-03	3.45E-03	1.08E-04	3.56E-03	6.92E-03	2.26E-04	7.15E-03
9	LO2 Endcap - fwd	7532	7735	6.41E-04	1.82E-05	6.59E-04	4.93E-04	2.49E-05	5.18E-04	2.70E-04	2.59E-05	2.95E-04
10	LO2 Endcap - aft	7736	7939	1.86E-04	8.33E-06	1.94E-04	1.10E-04	6.08E-06	1.16E-04	1.01E-04	2.60E-06	1.03E-04
11	LO2 Cylinder - aft	79 40	8227	8.49E-05	5.68E-05	1.42E-04	3.45E-03	1.07E-04	3.56E-03	3.00E-03	7.18E-05	3.07E-03
12	LO2 Endcap - aft	8228	8431	3.97E-04	9.15E-06	4.06E-04	4.91E-04	2.48E-05	5.16E-04	1.01E-04	1.31E-05	1.14E-04
Ţ	fotal Number of Pene	tratio	ıs (N):	1.16E-02	9.18E-04	1.25E-02	2.39E-02	7.97E-04	2.47E-02	3.20E-02	1.02E-03	3.31E-02
			7		PNP	0.988		PNP	0.976		PNP	0.967
		8		N	PNPreq	0.950		PNP _{req}	0.950		PNP _{req}	0.950
		_	PNP=	e n	N/N _{req}			N/N _{req}	0.481		N/N _{req}	0.644

- Analysis predicts with 120-layer MMOD-IMLI:
 - For 100 m² OFD, 51.6° 400km orbit, 15 year mission:
 - There would be 0.0125 penetrations
 - PNP = 98.8% or 24% of the allowed risk

OFD Penetration Risk

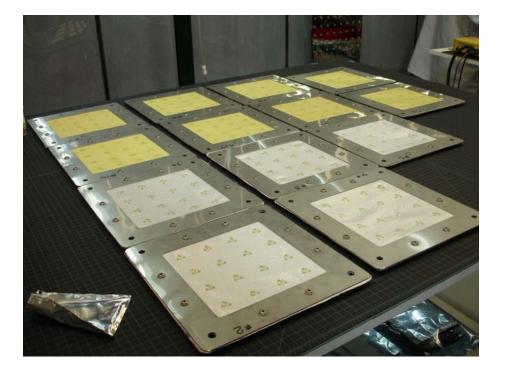
Hypervelocity Impact Testing

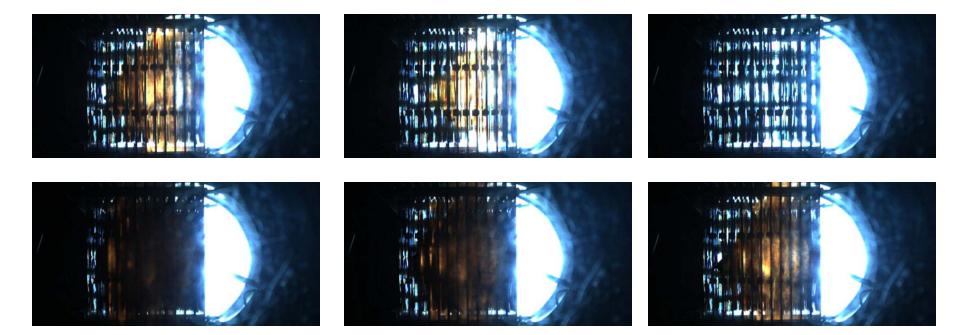


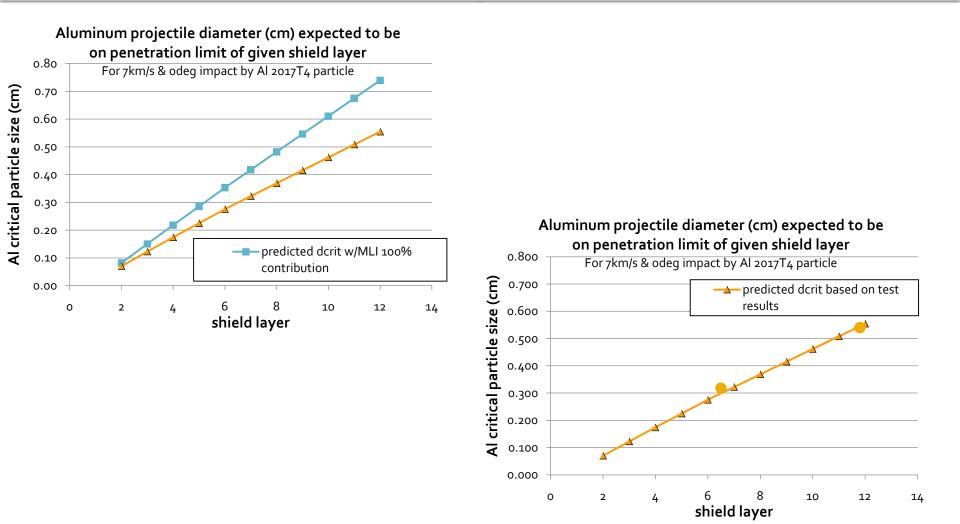


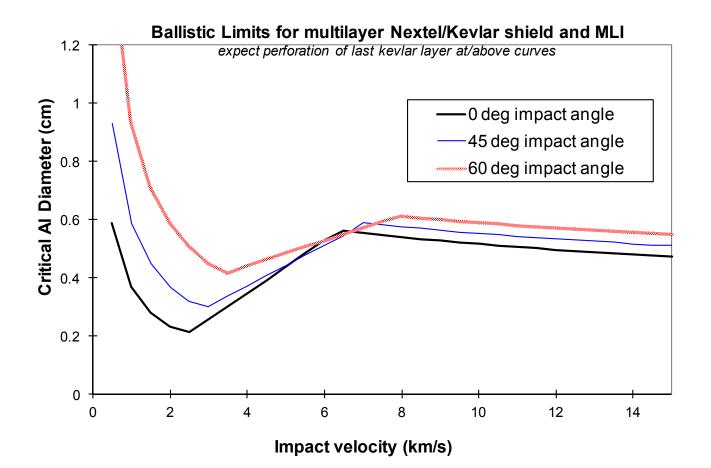
- Quest deemed HVI testing critical:
 - Quest paid for HVI shots at White Sands Test Facility
 - Two shots were planned, to give two data points for preliminary BLE development
 - One shot was an Al spherical particle, near the critical particle diameter for the selected mission, at 7 km/s (15,700 mph).

MMOD-IMLI prototype




MMOD-IMLI prototype


Hypervelocity Impact Testing


HVI Results

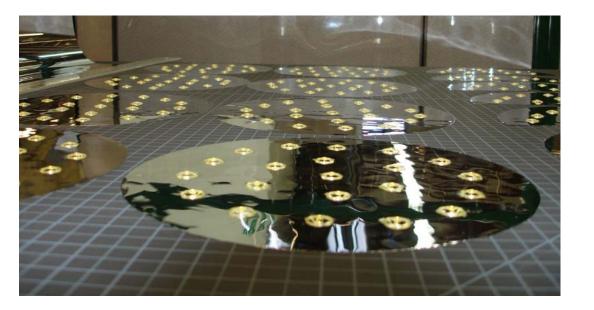
Ballistic Limit Equations

MMOD-IMLI stopping power

Layer Number	m _{sh_eff} (g/cm²)	S (cm)	Aluminum projectile diameter on failure threshold of each shield layer at 7km/s, 0° d (cm)
1	NA	NA	NA
2	0.066	1.8	0.070
3	0.104	3.7	0.123
4	0.141	5.5	0.174
5	0.178	7.4	0.225
6	0.215	9.2	0.275
7	0.248	11.1	0.322
8	0.280	12.9	0.369
9	0.312	14.8	0.415
10	0.345	16.6	0.462
11	0.377	18.5	0.508
12	0.410	20.3	0.555

Ballistic Limit Equations

$$m_b = 0.185 \, d \cdot \rho_p$$


$$m_w = 29 M_p \cdot V_n \cdot S^{-2} = \frac{29\pi}{6} \cdot d^3 \cdot \rho_p \cdot V_n \cdot S^{-2}$$

- MMOD-IMLI structure performed nearly as modeled
- Completely stopped a 5.4mm particle at 6.6km/s without use of a rear wall
- MMOD-IMLI mass was 8.0 kg/m²
- Has a theoretical mass 24% less than advanced multishock shields for same shielding
- Also provides thermal insulation in a single subsystem

MMOD thermal testing on cryotank

- 8-layer MMOD-IMLI structure built and installed on 2oL tank
- Heat flux measured via LN2 boiloff calorimetry
- Thermal conductance was 1.58W/m²
- Thermal conductivity was 0.12mW/m-K
- IMLI thermal conductivity is 0.066mW/m-K
- Estimated heat flux through full 120-layer MMOD-IMLI structure is 0.10W/m²

- Feasibility of MMOD-IMLI was proven, TRL3 achieved
- MMOD-IMLI can provide both high performance thermal insulation and MMOD shielding
- MMOD-IMLI combines thermal barriers, precise layer spacing, and support for high strength ballistic layers
- Thermal performance matches our modeling closely
- MMOD performance can be estimated with BLEs
- MMOD-IMLI can be engineered to meet mission requirements

Acknowledgements

We'd like to acknowledge the support and collaboration of:

- Eric Christiansen, JSC, NASA MMOD Consultant
- Dana Lear, JSC, NASA MMOD Consultant
- Wesley Johnson, KSC, NASA Technical Monitor
- Bruce (Alan) Davis, Jacobs Technology, White Sands Test Facility, Test Manager
- Genevieve Duvaud, Ball Aerospace, MMOD Consultant
- Gary Mills, Ball Aerospace, Staff Engineer
- Phill Tyler, Quest Thermal Group, Mechanical Engineer
- Scott Dye, Quest Thermal Group, Principal Investigator
- Alan Kopelove, Quest Thermal Group, CEO

Micrometeoroid/Orbital Debris – Integrated Multilayer Insulation

Contact Information:

Alan Kopelove, Quest Thermal Group, 303.395.3100x101 AlanK@quest-corp.com

Jennifer Marquardt, Ball Aerospace, 303. 939.4005 jsmarqua@ball.com

> Proprietary, Patented & Patent Pending Technology of Quest Thermal Group and Ball Aerospace