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Highly Variable Radiators for  
Improved Spacecraft Thermal Control 



Spacecraft thermal control 

 Spacecraft (SC) must be kept within proper temperatures 
 High power SC in Earth orbit need to reject waste heat 
 Deep space exploration missions need to both reject 

excess heat and conserve heat in different mission phases 
 Variable radiators provide this capability. 
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Variable louver radiator on Juno. 



Spacecraft thermal control 

 Variable heat rejection is an enabling technology to reliably 
vary heat rejection during human and robotic spaceflight 
missions with wide variation in thermal environments and 
vehicle heat loads 

 Technology advancements needed include variable heat 
rejection radiators, with low mass and high energy 
efficiency 
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SMM4 with louver radiators. 



Spacecraft thermal control 

 Spacecraft waste heat is rejected to space by radiators 
 Heat leaves the SC and radiator via blackbody radiation 
  Q = A ● ε ● σ ● (Thot

4  -  Tcold
4 ) 

 SC internal heat is currently brought to radiator surface via 
heat doublers, heat pipes or pumped coolant loops 

 Variable radiators use variable emissivity coatings or 
surfaces, variable surface area, or pumped loops. 
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High power deployed radiators  
on ISS use pumped NH3 loops. 



Spacecraft thermal control 

 Current state-of-the-art variable radiators are louver design 
 Movable louvers cover/uncover a high ε surface with metal 

vanes of low ε 
 Effective ε varies from 0.14 to 0.7, for a 5:1 turndown ratio 
 NASA has requested new technology able to provide  

6:1 to 12:1 turndown ratios 
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  Louver radiator design. 

Multiple louver radiators on Rosetta. 



Integrated Multilayer Insulation (IMLI)  

 Ball Aerospace and Quest Thermal Group have been 
developing advanced thermal insulation systems since 2007 

 IMLI is an advanced next generation MLI  
 Uses discrete polymer spacers instead of netting  
 IMLI has half the heat flux per layer of netting MLI 
 IMLI has predictable thermal performance 
 IMLI and variants provide structural support up to 90 psi 

 

6 

IMLI showing spacers and layers. 



IMLI flight on GPIM & RRM3  

 Green Propellant Infusion Mission (GPIM) 
– NASA and Ball Aerospace & Technologies 

Corp. are collaborating on GPIM  
– Will demonstrate the capabilities of a 

Hydroxyl Ammonium Nitrate fuel/ oxidizer 
– Flight scheduled for June 2019 

 
 Remote Refueling Mission 3 (RRM3)  

– NASA RRM3 flight experiment on cryogenic 
storage and transfer 

– IMLI insulates a cryocooled flight dewar 
– IMLI flew on CRS-16, is currently on the ISS, 

and is at TRL9 
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A family of insulation systems have evolved 
based on Discrete Spacer Technology  
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Application Development 
Status 

TRL 

Integrated Multilayer Insulation 
(IMLI) 

In space and high vacuum Phase 3 SBIR completed, 
1st spaceflight 2018 
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Load Bearing Multilayer Insulation 
(LBMLI) 

Supports thermal shields for 
active cooled systems 

Phase 3 SBIR completed 5 

Vapor Cooled Structure MLI 
(VCSMLI) 

Vapor cools tank support 
elements 

Phase II SBIR complete 5 

Cellular Load Responsive MLI 
(CLRMLI) 

Replaces SOFI on launch 
vehicle cryotanks 

Phase II SBIR complete 4 

Vacuum Cell Multilayer Insulation  
(VCMLI) 

Replaces SOFI on launch 
vehicle cryotanks 

Phase I CRAD complete 4 

Multi-Environment MLI (MEMLI) Operates in environments 
from space to on-Mars 

Phase II SBIR in progress 4 

Micrometeorite and Orbital Debris 
MLI (MMOD MLI)  

Thermal insulation and 
MMOD protection 

Phase I SBIR complete 3 

Variable Conductance Radiator 
Variable Gas Radiator 

Spacecraft thermal control Phase II SBIR in progress 4 



Control over internal pressures 

 Quest Thermal and Ball have developed systems that control internal gas 
pressures or internal vacuum - useful for Variable Gas Radiators. 

 Cellular Load Responsive MLI and Vacuum Cell MLI use a cellular core 
that cryopumps internal gas species, has internal or external IMLI layers, 
and performs both in-air and in-space. 

 

 

9 VCMLI left, CLRMLI concept (middle); CLRMLI prototype (right) 



Variable Conductor Radiator (VCR) 

 Variable Conductor Radiator uses variable heat actuators embedded  
in IMLI insulation 

 Heat conductors are SMA actuators that open/close thermal paths 
 VCR is capable of acting as either high performance insulation or an 

effective radiator 
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VCR ‘off’ 
 
 
 
 
 
VCR ‘on’ 



Variable Conductor Radiator (VCR) 

 VCR can be engineered for specific heat rejection values 
 Number of IMLI layers affects minimum and maximum heat radiated 
 Heat actuators can be varied for size, number and interface conductance 
 Thermal modeling estimates high turndown ratios are possible. 
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Modeled maximum and minimum heat rejection. 



Variable Conductor Radiator (VCR) 

 A VCR prototype was modeled, analyzed, 
designed, built and tested in an SBIR Phase I 

 Heat actuators were designed and 
demonstrated to work (SMA and bimetallic 
passive actuators). 

 Heat radiated varied from 24.9 W/m2 to 268 
W/m2, achieving a turndown ratio of 11:1 
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Cold target  
 
 
 
VCR 
prototype 



Variable Conductor Radiator (VCR) 

 Variable Conductor Radiator technology was 
proven feasible and achieved TRL4 

 Heat flows were analyzed; next generation 
actuator design should improve maximum and 
minimum heat radiated 

 A 31:1 or greater turndown ratio is modeled and 
believed achievable 
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VCR heat actuators 
backplane film heaters.  



Variable Gas Radiator (VGR) 

 VGR uses variable gas conductance within an IMLI insulation stack 
 VGR can also act as either a good insulator or a good radiator 

 
  
  

 
 
 

14 

VGR ‘off’ 
 
 
 
 
 
 
 
 
VGR ‘on’ 



Variable Gas Radiator 

 VGR heat conduction through the Variable Radiator is controlled by the 
number of IMLI layers, gas species, gas pressure, emissivity of outer 
radiator surface, and parasitic heat leak 

 Modeled max and min heat rejection shown below 
 VGR should be capable of high turndown ratios 
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Modeled VGR Heat Rejection 

# IMLI radiation shields Warm Boundary Cold  
Boundary 

Internal Vacuum 
W/m2 

He Gas Filled   
W/m2 Turndown ratio 

2 295 K 3 K 9.1 378 41 
3 295 K 3 K 4.7 358 76 
5 295 K 3 K 2.4 325 136 
10 295 K 3 K 1.1 267 248 

IMLI layers can be 
varied to control 
max/min heat flow 



Variable Gas Radiator 

 Heat conduction through radiator controlled by gas pressure 
 Pressures in the range 0.1millitorr to 1 torr allow full heat control 
 Low level precision gas pressure controller was developed  
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Helium gas pressure torr  Vacuum 0.0001 0.001 0.01 0.1 1 10 

Modeled Radiated heat (W) 9.11W 10.1W 17.9W 66.1W 218W 377W 377W 

%Max Heat Flux 2% 3% 5% 18% 58% 100% 100% 

Radiator Surface Temp, K 114 117 135 187 252 289 289 

BaseplateTemp, K 294 294 294 294 294 294 294 

Gas pressure 
controller 

VGR test 
platform, with 
VGR and cold 
target shown 



Variable Gas Conductor Radiator 
 A VGR prototype was designed, built and tested 
 A gas enclosure was designed and fabricated 
 Radiator test platform was designed and built 
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VGR prototype ready for test; left two images show 
prototype mounted and facing cold target; right 
images show VGR outer radiator surface fabrication 



Variable Gas Conductor Radiator 

 Radiated heat was controlled by gas pressure and baseplate temperature 
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VGR Measured Radiated Heat 

Baseplate 
temperature 

°C 

Gas 
pressure 

torr 

Radiated 
Heat Flux 

W/m2 

10 °C 0.000 7.86 
10 °C 0.050 97.05 
10 °C 0.100 125.7 
10 °C 0.500 199.0 
10 °C 1.000 216.2 
40 °C 0.050 116.6 
40 °C 0.100 139.5 
40 °C 0.500 252.6 
40 °C 1.000 283.2 



Variable Gas Conductor Radiator 

 Variable Gas Radiator technology was proven feasible, reached TRL4 
 A first prototype achieved a 36:1 turndown ratio 
 Good agreement between thermal model and test data 
 Lightweight system at 0.69 kg/m2 (louvers are ~5 kg/m2) 
 NASA SBIR Phase II R&D program in progress  
 2nd generation VGR has improved enclosure, gas control, and larger 

expected turndown ratio  
 Current R&D is to mature and improve Variable Radiator technologies 
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Variable Radiator technologies 
 Variable Radiator technology, using either variable heat actuators or 

variable gas controllers, was proven feasible, and are at TRL4 
 First prototypes achieved 11:1 to 36:1 turndown ratios 
 Thermal model and prototype test data suggest much higher turndown 

ratios can be achieved 
 R&D work is in progress, funded by NASA SBIR program 
 R&D goals are to mature and improve Variable Radiator technologies, and 

prepare for commercial availability 
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VGR left, VCR right. 
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